Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 127: 105898, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35792317

RESUMEN

The elevation of epoxy-fatty acids through inhibition of soluble epoxide hydrolase (sEH) is efficient for the treatment of inflammatory and pain-related diseases. Herein, we reported the discovery of a series of benzamide derivatives containing urea moiety as sEH inhibitors. Intensive structural modifications led to the identification of compound A34 as a potent sEH inhibitor with good physicochemical properties. Molecular docking revealed an additional hydrogen-bonding interaction between the unique amide scaffold and Phe497, contributing to sEH inhibition potency enhancement. Compound A34 exhibited outstanding inhibitory activity against human sEH, with an IC50 value of 0.04 ± 0.01 nM and a Ki value of 0.2 ± 0.1 nM. It also showed moderate systemic drug exposure and oral bioavailability in vivo metabolism studies. In carrageenan-induced inflammatory pain rat model, compound A34 exhibited a better therapeutic effect compared to t-AUCB and Celecoxib. Metabolism studies in vivo together with an inflammatory pain evaluation suggest that A34 may be a viable lead compound for the development of highly potent sEH inhibitors.


Asunto(s)
Inhibidores Enzimáticos , Epóxido Hidrolasas , Animales , Benzamidas/farmacología , Benzamidas/uso terapéutico , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Simulación del Acoplamiento Molecular , Dolor , Ratas , Solubilidad , Urea/farmacología
2.
Bioorg Med Chem Lett ; 70: 128805, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35598794

RESUMEN

The pharmacological inhibition of soluble epoxide hydrolase (sEH) was shown to reduce inflammation and pain. Herein, we described a series of newly synthesized sEH inhibitors with the trident-shaped skeleton. Intensive structural modifications led to the identification of compound B15 as a potent sEH inhibitor with an IC50 value of 0.03 ± 0.01 nM. Furthermore, compound B15 showed satisfactory metabolic stability in human liver microsomes with a half-time of 197 min. In carrageenan-induced inflammatory pain rat model, compound B15 exhibited a better therapeutic effect compared to t-AUCB and Celecoxib, which demonstrated the proof of potential as anti-inflammatory agents for pain relief.


Asunto(s)
Inhibidores Enzimáticos , Epóxido Hidrolasas , Animales , Benzamidas/farmacología , Benzamidas/uso terapéutico , Inhibidores Enzimáticos/química , Dolor , Ratas , Relación Estructura-Actividad , Urea/farmacología , Urea/uso terapéutico
3.
Biointerphases ; 17(2): 020801, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35232023

RESUMEN

The lipid-coated mesoporous silica nanoparticles (LMSNs) that can synergistically harness the advantages and mitigate the disadvantages of the liposomes and MSNs are considered potential drug carriers. So far, several methods have been developed to prepare LMSNs, including vesicle fusion, thin-film hydration, and solvent exchange. Despite their wide application in LMSN preparation, these methods are short of detailed elaboration and comparison, which hinders their further development. In this review, for the first time, the three methods are systematically summarized, including their mechanisms, influence factors, advantages, and limitations. Although these methods are all based on lipid self-assembly, there is still a difference between them. In order to efficiently prepare LMSNs, we proposed that a suitable method should be selected based on the actual situation. It is conceivable that the elaboration and comparison in this review will make these methods easy to be understood and provide guidance for the design of LMSNs as drug carriers.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Portadores de Fármacos , Lípidos , Liposomas , Porosidad
4.
Nucleic Acids Res ; 37(Web Server issue): W345-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19491312

RESUMEN

We have developed a set of online tools for measuring the semantic similarities of Gene Ontology (GO) terms and the functional similarities of gene products, and for further discovering biomedical knowledge from the GO database. The tools have been used for about 6.9 million times by 417 institutions from 43 countries since October 2006. The online tools are available at: http://bioinformatics.clemson.edu/G-SESAME.


Asunto(s)
Genes , Programas Informáticos , Vocabulario Controlado , Análisis por Conglomerados , Bases de Datos Genéticas , Internet
5.
Bioinformatics ; 23(10): 1274-81, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17344234

RESUMEN

MOTIVATION: Although controlled biochemical or biological vocabularies, such as Gene Ontology (GO) (http://www.geneontology.org), address the need for consistent descriptions of genes in different data sources, there is still no effective method to determine the functional similarities of genes based on gene annotation information from heterogeneous data sources. RESULTS: To address this critical need, we proposed a novel method to encode a GO term's semantics (biological meanings) into a numeric value by aggregating the semantic contributions of their ancestor terms (including this specific term) in the GO graph and, in turn, designed an algorithm to measure the semantic similarity of GO terms. Based on the semantic similarities of GO terms used for gene annotation, we designed a new algorithm to measure the functional similarity of genes. The results of using our algorithm to measure the functional similarities of genes in pathways retrieved from the saccharomyces genome database (SGD), and the outcomes of clustering these genes based on the similarity values obtained by our algorithm are shown to be consistent with human perspectives. Furthermore, we developed a set of online tools for gene similarity measurement and knowledge discovery. AVAILABILITY: The online tools are available at: http://bioinformatics.clemson.edu/G-SESAME. SUPPLEMENTARY INFORMATION: http://bioinformatics.clemson.edu/Publication/Supplement/gsp.htm.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Semántica , Terminología como Asunto , Vocabulario Controlado , Algoritmos , Humanos
6.
BMC Bioinformatics ; 5: 130, 2004 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-15357877

RESUMEN

BACKGROUND: Peach is being developed as a model organism for Rosaceae, an economically important family that includes fruits and ornamental plants such as apple, pear, strawberry, cherry, almond and rose. The genomics and genetics data of peach can play a significant role in the gene discovery and the genetic understanding of related species. The effective utilization of these peach resources, however, requires the development of an integrated and centralized database with associated analysis tools. DESCRIPTION: The Genome Database for Rosaceae (GDR) is a curated and integrated web-based relational database. GDR contains comprehensive data of the genetically anchored peach physical map, an annotated peach EST database, Rosaceae maps and markers and all publicly available Rosaceae sequences. Annotations of ESTs include contig assembly, putative function, simple sequence repeats, and anchored position to the peach physical map where applicable. Our integrated map viewer provides graphical interface to the genetic, transcriptome and physical mapping information. ESTs, BACs and markers can be queried by various categories and the search result sites are linked to the integrated map viewer or to the WebFPC physical map sites. In addition to browsing and querying the database, users can compare their sequences with the annotated GDR sequences via a dedicated sequence similarity server running either the BLAST or FASTA algorithm. To demonstrate the utility of the integrated and fully annotated database and analysis tools, we describe a case study where we anchored Rosaceae sequences to the peach physical and genetic map by sequence similarity. CONCLUSIONS: The GDR has been initiated to meet the major deficiency in Rosaceae genomics and genetics research, namely a centralized web database and bioinformatics tools for data storage, analysis and exchange. GDR can be accessed at http://www.genome.clemson.edu/gdr/.


Asunto(s)
Genética , Genoma de Planta , Genómica/métodos , Internet , Investigación , Rosaceae/genética , Gráficos por Computador , Bases de Datos Genéticas , Alineación de Secuencia/métodos , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...